EMPIRE XPU Tutorial

Patch Antenna design

Overview: Topics

- Template wizard
- Basic features
- Simulation
- Postprocessing
- Nearfield
- Farfield
- Tuning

Step 1: Template Wizard

- Start Empire XPU
- Open Templates, Antennas, Microstrip Antenna
- Set the "Resonance Frequency" to 2.45 GHz
- Uncheck "Sweep Parameter: Width"-
- Press "Open Selection"
- Select File, Save As, optionally create new folder

Comments:

Using the template "Microstrip antenna..."

- Automatic generation of patch dimensions, substrate, lumped port, near and far field definitions
- Automatic generation of mesh

Step 2: Structure Check

- Switch to the 3D Design tab, verify that the design has the following features:
- Groups: Objects and properties
- Sources: Port parameters
- Simulation Setup:
 - Drawing unit
 - Frequency range
 - Accuracy
 - Loss calculation
 - Boundary Conditions
- Mesh Setup:

Automatic Meshing

Mesh Info: number of cells

Step 3: Simulation

- Switch to the "Simulation" tab. Click on Start Complete Simulation and switch to the 2D Results tab, the result plots should appear shortly
- Select Scattering Parameters as the Plot Type

- The microstrip antenna from the template wizard will be automatically meshed and the simulation will be started
- During the simulation the time pulses are monitored
- After the simulation is finished the S-Parameter results are available

Step 3: Simulation

- Add a new result plot
- Select Voltage as the Plot Type

Step 4: Results

- Select Impedance as the Plot Type and check the input impedance
- Select Far Fields as the Plot Type and check the calculated far field

- By default, all the curves are displayed. Here, only Z1.in is displayed, which is the impedance of the structure seen from Port 1
- The far field plot only shows patterns for cuts at angles phi= 0° (xz) and phi= 90° (yz)

^{*} In Legend: Select curves "db(eabs)", right click "Show only and autocolor", Button "Autoscale"

- Switch to the 3D Results tab
- Select Field Monitors to open Field Monitor overview
- Move sliders to control display planes
- Switch on/off planes

- Turn off visibility of complete
 EM Field display
- Turn On visibility of EM Farfield display
- Press z-Key (Zoom Extents)

Step 7: Tuning 1

- Switch to 2D Design mode
- Select patch at right side (left click)
- Click on Advanced, Parameter, Stretch Parameter
- Enter X: dx as shift vector and confirm with OK
- Set Variable to:
- Type = Stepped
- Value:0, Min: -2000, Max: 0, Step: 500,
- OK

Comment: Parameters may also be added to the coordinates of the elements in the structure list.

Step 7: Tuning 1

EMPIRE

- Select patch at left side
- Click on Advanced, Parameters, Stretch Parameter
- Enter X: -dx as shift vector and confirm with OK
- Open Side menu: Variables and use the slider bar to check the range

Comment: Varaibles may also be added to the coordinates of the elements in the group list.

Step 8: Tuning 2

- Click "Simulation Setup", set "Start Frequency" to 1.25 GHz, "Stop Frequency" to 5 GHz and "Target Frequency" to 2.45 GHz
- Click "Simulation" Tab
- Select "Parameter Sweep Setup"
- Click "Create Parameter Sweep"
- Click "Start" to start

EMPIRE

Step 9: Tuning 3

Press Update Data

Comment: All results of subsequent simulations can be automatically displayed in the window

